SALT II Steered Agile Laser Transceiver

K. Pister

B. Boser

BSAC, EECS, UCB

Goal:10 Mbps; 10 km; 1 cm³

System Goal

- 10 Mbps
- 10 km
- 1 cm³
- MAV to MAV comm
 - Problem: no MAV money

System Components

- Steered laser transmitters
 - COTS laser diode
 - MEMS variable focus lens
 - MEMS steering mirror
- CMOS imaging receiver
- 3 axis gyros and accelerometers
- Algorithms and software

2D beam scanning

6-bit DAC Driving Scanning Mirror

- Open loop control
- Insensitive to disturbance
- Potentially low power

~8mm³ laser scanner

Steered Laser Transmitter (SALT I)

- 1Mbps demonstrated
- Not so agile (several milliseconds)
- Not much steering (several degrees)
- Bad alignment, huge divergence (degrees)
- 8mm³

Laterally Actuated Gimbals

Laterally Actuated Gimbals

- Single crystal silicon
- Low inertia mirrors
- Scaleable
 - Mirrors
 - actuators
- Position sensing
- Large angle scanning
- Fast!
 - 700 micron mirror → 10 microsecond settling

COTS Optical Comm.

Laser mote

- 4bps OOK
- Laser pointer

CCD camera + laptop

Video Semaphore Decoding

CMOS Imaging Receiver

- Array of pixels provides
 - Spatial division multiplexing
 - Reduced DC ambient
- CMOS Active Pixels
 - CON: limits wavelengths (<1000nm)
 - PRO
 - Cheap!
 - Easy/fast prototypes
 - Gordon Moore

1 Mbps CMOS imaging receiver

Theoretical Performance

 $P_{total} = 50 \text{mW}$ $P_t = 5 \text{mW}$ $\theta_{1/2} = 1 \text{mrad} \rightarrow G_{ant} = 71 \text{dB}$ BR = 5 Mbps

10nJ/bit

 $A_{receiver} = 1 cm^2$ $P_r = 10 nW (-50 dBm)$ $P_{total} = 50 uW /pixel$ SNR = 15 dB~10,000 photons/bit

Smart Dust Mini Mote

Theoretical Performance

 $P_{total} = 100uW$ $P_t = 10uW$ $\theta_{\frac{1}{2}} = 1mrad$ BR = 5 Mbps

20pJ/bit!

 $A_{receiver} = 0.1 \text{mm}^2$ $P_r = 10 \text{nW (-50dBm)}$ $P_{total} = 50 \text{uW}$ SNR = 15 dB

Theoretical Performance

 $P_{total} = 50$ mW $P_{t} = 5$ mW $\theta_{\frac{1}{2}} = 1$ mrad BR = 2 Mbps

25nJ/bit!

 $A_{receiver} = 1m^2$ $P_r = 10nW (-50dBm)$ $P_{total} = 50uW / pixel$ SNR = 17 dB

3 Axis Gyro

- Critical for both acquisition and maintenance stability
- Requires
 - ~10x improvement in resolution
 - ~10x decrease in power consumption

Algorithms and Software

Acquisition

- Binary search with variable divergence
- 10 microsecond transitions, 10 bit "hello"s
- -<1ms @ 100m, minim
- Gyro stabilized for long range acquisition
- Inertial measurement for short range acquisition

Maintenance

- Beam dithering + gyro feedforward
- Dynamic transmit power & pixel activation
- Ad Hoc Networking

Optical Communication

Loss = (Antenna Gain)
$$A_{receiver} / (4\pi d^2)$$

Antenna Gain = $4\pi / \theta_{\frac{1}{2}}^{2}$

Satellite Imagery

Your window to the world...

Vancouver, British Columbia

'01 Goal

Micro Mote - First Attempt

Output Power Efficiency

- RF
 - Slope Efficiency
 - Linear mod. ~10%
 - GMSK ~50%
 - $-P_{\text{overhead}} = 1-100 \text{mW}$
- Optical
 - Slope Efficiency
 - lasers ~25%
 - LEDs ~80%
 - $-P_{\text{overhead}} = 1 \text{uW} 100 \text{mW}$

Limits to RF Communication

Cassini

- 8 GHz (3.5cm)
- 20 W
- $1.5 \times 10^9 \text{ km}$
- 115 kbps
- -130dbm Rx
- 10⁻²¹ J/bit
 - $kT = 4x 10^{-21} J @300K$
 - ~5000 3.5cm photons/bit

Canberra

4m, 70m antennas

